Nie istnieje kąt ostry taki, że
\displaystyle \sin\alpha= \frac{1}{3} i \displaystyle \cos\alpha= \frac{2}{3}
\displaystyle \sin\alpha= \frac{5}{13} i \displaystyle \cos\alpha= \frac{12}{13}
\displaystyle \sin\alpha= \frac{3}{5} i \displaystyle \cos\alpha= \frac{4}{5}
\displaystyle \sin\alpha= \frac{9}{15} i \displaystyle \cos\alpha= \frac{12}{15}
03d74aaf-c628-4de8-87ba-f5666a482198