logo

Zadanie

W czworościanie, którego wszystkie krawędzie mają taką samą długość , umieszczono kulę tak, że ma ona dokładnie jeden punkt wspólny z każdą ścianą czworościanu. Płaszczyzna , równoległa do podstawy tego czworościanu, dzieli go na dwie bryły: ostrosłup o objętości równej objętości dzielonego czworościanu i ostrosłup ścięty. Oblicz odległość środka kuli od płaszczyzny , tj. długość najkrótszego spośród odcinków , gdzie jest punktem płaszczyzny .

Rozwiązanie

O zadaniu

ID

1ac3af83-7767-440b-98b6-42f6196e4fff

Poziom:
Szkoła średnia
Format rozwiązania:
Ocena:
0.00(0)
Dziedzina:
Definicje: